PREDICTION OF FLARE ACTIVITY OF STELLAR AGGREGATES. I.
THEORETICAL PART*
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The problem is posed of predicting the number ny(t) of flare stars that
have exhibited precisely k flares by the time t on the basis of data on
these quantities known during the total time T of observations of the
aggregate. The problem posed by Ambartsumyan [3] of determining the
distribution function f(v) of the true frequency of stellar flares from
known chronology of these data is equivalent to the limiting form of our
formulation — prediction in the future over an infinitely long time. An exact
analytic solution of the problem obtained without any assumption about the
function f(v) is given. It permits prediction of the steady flare activity
of the aggregate into both the future and the (known) past. It follows
from this solution that prediction into the future is in principle impos-
sible to times that exceed the doubled time 2T of the available observa-
tions (this means that the problem of determining the function f(v) can-
not be solved). Moreover, because of the unavoidable fluctuations in the
observational data ny(T), such prediction is limited to even shorter

times, and these are shorter the larger the value of k. Prediction into
the past and into the future on the basis of the data ny(T) at the present
time and its possible errors due to small fluctuations in these data are
illustrated for the examples of the Pleiades and the Orion aggregate.

1. Introduction

Many-sided investigations of flare stars in stellar -aggregates (Pleiades, Orion,
etc.) have already made it possible to draw a number of important conclusions about
the part they play in the evolution of stars and the stellar systems containing them

(see [1]).

The principal conclusion is that almost all stars in young stellar aggregates fainter
than a certain limiting magnitude (which varies from aggregate to aggregate) are flare
stars. Intimately related to this is the problem of statistical estimation of the total
number of flare stars in aggregates, including stars not yet discovered [2]. With the
accumulation of observational data the estimates of the numbers for individual aggre-
gates have increased systematically, and it was natural to attribute this to the ideal-
ization on which the estimates were based, namely, that of an approximately equal fre-
quency of flares. The idea therefore took hold that there were two possible frequencies,
and then three or four, around which the flare stars were grouped on the basis of their
"true" flare frequencies.

The unsatisfactory description of the observational data by means of several discrete
frequencies dictated, and the accumulation of sufficient statistical material enabled
Ambartsumyan already in 1978 [3] to undertake it, the posing of a more general and com-
plicated problem: the determination of the distribution function of the "true'" fre-
quencies of the flare stars, the problem being posed in this case on the basis of not
only data relating to the end of the epoch of observation but also the 'chronology"
of these data, i.e., their behavior in time. The approximate representation of the
distribution function of the flare stars with respect to frequencies in the form of
an un-normalized gamma distributjon for the Pleiades [3] and Orion [4] was the solu-
tion of this problem.
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The analysis that we have made of this inverse problem shows that it is improperly
posed to a high degree, and therefore at the given stage of the observations the deter-
mination of the frequency distribution function £(v) of stellar flares is extremely
difficult. Instead of this, it appears to us, one should make a restriction to a more
modest (but, at the same time, more generall) formulation of the problem: the predic-
tion in time of the flare activity of the aggregate, the problem of determining f(v)
being avoided. Our formdlation of the problem is as follows: from the known observa-
tional data nk(t), the numbers of stars of the aggregates that by the time t of observa-
tions have exhibited precisely k flares, to determine these same numbers for future
times, i.e., predict the behavior of the numbers at future observation times.

Although the new formulation is not so improperly posed, it still has that short-
coming, and a rigorous analysis reveals a number of features that are also inherent
in the original formulation. 1In the first place, this concerns the question of the
correct theoretical description of the chronology of the observational data. In this
paper we give theoretical expressions (see also [5]) that describe the analytical be-
havior of the numbers nr(T) in the past and in the future on the basis of the data ny(T)
at the present time, and for the examples of the Pleiades and the Orion aggregate we
illustrate the possible errors of prediction due to fluctuations of the observational
data. Subsequently we shall compare them with the chronology of the observational data
and attempt to take into account selection effects that distort the behavior of these
quantities in the process of the observations.

2. Formulation of the Prediction‘Problem

Let N be the total number of flare stars in the considered aggregate, and f(v)
be the distribution of these flare stars with respect to the "true" flare frequencies,
so that oo
N= fﬂv) .
8

13

Because of insufficient statistics of the observational data, the observed flare
frequencies, i.e., the set of numbers nk(T), which indicate the numbers of stars that
have exhibited precisely k flares during the complete epoch of observations, do not
directly determine the function f(v) and in their behavior (dependence on k) can deviate
strongly from £(v). .If we had very good statistics in time, i.e., if we had observed
the aggregate for such a long time T that all flare stars would have exhibited sufficiently
large numbers of flares, then at large T the numbers ny(T) would approach the numbers of

k k41

stars f(v)dv having true flare frequencies in the interval Av—.(ﬁf' —7:—)' and in the

limit we should have the exact correspondence

ky 1 ’
n(T) — ——)-——- (1)
(1) = H(F)F
But if the time of observations T is not so great, the numbers on the right- and left-
hand sides of the relation (1) will differ appreciably. This in fact is the reason
why the inverse problem of finding the distribution of the '"true" flare frequencies
arises. N

For a variety of reasons, noted in [3], flares in different flare stars can be
assumed to occur independently of each other, while the circumstance that the observations
are made intermittently ensures to an adequate degree the condition of mutual indepen-
dence of successively detected flares of a given star.

A second assumption concerns the condition of stationarity of the ensemble of flare
stars of the aggregate as a whole during the complete epoch of observations (which is

only a few decades); this is expressed by time-independence of the unknown distribution
f(v).

In the framework of such assumptions we can, following Ambartsumyan, assume that
ve are presented with a stationary Poisson process, and for the number of stars that
exhibit by the time of observations t precisely r flares we can write
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n.(t) = jf(v)(:—t')r e dy, r=0,1,. (2)
§ !

As already adopted, we take as the current time t the sum of the exposures of the
observations. If the flare activity of the aggregate is stationary, we can formally
replace the time by the current number of the flare in the general chronological cat-
alog of all observed flares of the aggregate, i.e., we can count the time by the number
of detected flares. This assumption is very natural (during equal intervals of observa-
tional time the same number of flares is detected in the aggregate) and eliminates
the technical difficulties of taking into account the real time of the observations
of the aggregate.

We now turn to Ambartsumyan’s formulation — the problem of determining the fre-
quency distribution function f(v). Suppose we were able to solve it and therefore knew
this function. Then, using the relation (1), we could find the numbers n,(t) for all
.instants of time t, doing this, moreover, not only for observations relating to the
past epoch but also for all times of future observations. That is, we should also know
the behavior of n,(t) in the future, to infinitely long times t - =, on the basis of
data of observations available at the observation epoch T. Thus, the formulation of
the problem — the prediction of all n,.(t) to infinity — is completely equivalent to
the problem of finding the function f(v).

Conversely, ability to predict to the infinite future the value of n,.(t) is equiva-
lent to knowledge of the function f(v), as follows from the clarifications of Eq. (1).

In view of the exceptional complexity of the formulation, we shall restrict our-
selves below to a more modest formulation of the problem, namely, the prediction of
nr(t) into the future, not over an infinitely long time interval, but only so far as is
possible within the permitted errors. This formulation is in fact more general: If
it is possible to predict n,.(t) to infinity, then the problem of determining f(v) will
also be solved; but if that is not possible, determination of the function f(v) will
also be impossible. We shall establish below that such prediction is in principle pos-
sible no further than to times t < 2T, i.e., times that do not exceed twice the time
of the existing observations.

It is clear that the problem of prediction can be solved only analytically, and
for this we must above all know how to describe sufficiently well — and, moreover, -
analytically — the behavior of ne(t) in the past, t < T, and then continue such descrip-
tion to future times t > T.

4. Description of the Past

Suppose that at the present time T we know the numbers ny(T), the numbers of flare
stars that during the complete epoch of observations T have exhibited precisely k flares.
We pose the problem of determining these quantities n,.(t) at times t < T, i.e., the
numbers of flare stars that have exhibited by the current time t of observations pre-
cisely r flares.. This problem can be solved relatively easily under the assumptions. -
made above of stationarity of the aggregate and mutual independence of individual flares.

Now an already realized Poisson process leads to a uniform distribution of events.
Therefore, if for one star precisely k flares have been observed during the time t,

these k flares must be distributed uniformly (of course, randomly) over the interval
(0, T).

We first derive an expression that describes the behavior of n,(t), the number
of stars of the aggregate that up to the current time t have not exhibited a single
flare. For this, we consider an individual star that during the time T has exhibited

the given number k of flares.

If this star does not have a single flare in the interval (0, t), all of its k
flares must occur during the time interval (t, T). The probability of an individual
flare in this interval is 1 — t/T, and for all k flares it is (1 — t/T)k,

Therefore, the mathematical expectation of the number of stars that up to the time
t have not exhibited a single flare as a proportion of the number ny(T) of stars that by

425



the time T have exhibited precisely k flares is np(T)(1 — t/T)k, for each value of
k=0,1, 2,... (for k = 0 this assertion is trivial).

Since we are interested in the number of stars n,(t) irrespective of the multiplicity
of flares of the flare stars, i.e., among all flare stars known or unknown at the present
time (T), we must sum the expression we have obtained over all values of k:

" m(t) = $ M (1-£)" (3)

Similar arguments lead us to an expression that describes the behavior in time
of the number n,(t) of stars that by the time t have exhibited precisely r flares. A
flare that during the time T has precisely k flares exhibits during the interval (0, t)
precisely r flares (r < k) with probability determined by the binomial distribution

() (-3)"

The mathematical expectation of the corresponding number of stars is determined by

n(t)=Y nk<r)cz(—) (1—— T r=0,1, 2, (%)

k=r

For r = 0, this expressioh goes over into the earlier one.

The expression (4) can also be directly deduced from (3) by r-fold differentiation
with allowance for the known relation

d'
n(f) =(— 1) — — not (5
| ) =( )m o 0, | )
which expresses n,(t) in terms of n,(t), The relation (5), in its turm, can be directly
verified by successive differentiation of Eq. (1). N

The relation (3) cannot be used in practice, since its right-hand side contains,
under the summation sign, the unobservable quantity n,(T), the number of flare stars
of the aggregate that are not detected during the entire time of the observations. We
therefore transform it to a different form that enables us to determine the behavior
in time of the total number of flare stars found by the current time t, denoting this
number by n(t). By virtue of the obvious relations

N=n,(t)+n(t) =ny(T) +nr(T)=n(x)
it follows from (3) that

n0=n(7) - 8 n(T)(1-£)"

k=t

[ <]
Since n(7) =3 n,(T), for the chronology of n(t) we finally have

k=l
- . .
n(t) =Y n(T) [1-(1-__) J (6)
k=1 T/
The result (6) can also be obtained by summing the expression (4) over all values
of r=1, 2,... . For t =T, the expressions (4) and (6) become identities: n,(T) =
¢ k—r
T i _—— =8, .
n.(T), since !l..";(l T) 4

The results (4) and (6) are what we require. They describe the theoretical behavior
in time (the chronology) of all the numbers n,(t) in the past for t < T on the basis of
the given values ni(T) of these quantities at the present time. The analytic behavior in
the time given by (4) and (6) is completely exact. Therefore, the problem reduces en-
tirely to accurate determination of the values of the numerical coefficients ny(T), which
are known from observations, with allowance for fluctuations and possible selection
factors.
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We make a remark concerning the limiting form of our (4), which describes the
n(t) chronology. As we already noted in Sec. 2, at long observation times T the set of
numbers ny(T) approaches the continuous distribution f(v) for values of v in the interval

k k+1

<_f, hTF_)' With increasing T, the numbers ny(T) must tend to zero if N except for quan-
tities with large values of k satisfying k 2z v'T. If in the expression (4) we go to

the limit T + », k + » but in such a way that the ratio k/T keeps the definite value

v, we arrive at the expression (2). We here use the well-known limit relatioms

(1_— _f-)k::<1—_l—.\v7‘—’e“", C;= k! _’_k'_.
T T) r-- rlk—r)la~erl

Thus, purely formally the expression (2) is the limiting form of our expression
(4) as T+ =, i.e., for infinitely long intervals of time, this being an assumption
that, strictly speaking, is also contained in the expression (2), since in practice
the specification of the function f(v) in accordance with the relation (1) is associated
with an infinitely long time of observations of the aggregate. In this connection one
might get the impression that (2) is approximate, but this is not the case. Both ex-
pressions are exact and are different representations: (2) is in terms of the unknown
function f(v), while (4) is in terms of the known ny(T).

5. Prediction Formulas

The relation (4) (the relations (3) and (6) are consequences of it) describes the
behavior of the numbers n,(t) in the past on the basis of the ng(T) given at the present
time. We pose this question: From the nk(T) given at the present time can we determine
the behavior of n,(t) for future times t > T?

The answer to this question is in the affirmative. Moreover, and this is the most
interesting result, the corresponding prediction formula is identical to the relation
*(4) that describes the past with the only difference that in it one must take t > T.
In other words, formula (4) describes the behavior of n,.(t) in both the past and the
future.

This assertion cgn be proved in different ways. For example, one can use the Bayes
approach to estimation of the probabilities of hypotheses. One can regard the expressions
(4) as a system of linear equations for ng(T) for given n,(t) with fixed time t < T
with t taken to be the present time and T an arbitrary time in the future. The solution
of this system is given by an expression like (4):

n(T)=3 n, (0 C.’,( T)' (1 - —T>"'. r=0,1,2,..

Kk a=p —t— 4
as can be shown by directly substituting this solution in (4).

The simplest derivation is as follows. The number of stars that have precisely r
flares during the time t = (T + t;) is determined by the expression (2). We consider
first the case r = 0: .

r —o{ T
"o(t)="o(7'+f1)=}f(")e “dv.
P

Using the expansion for exp(—vt,), we rewrite nyo(T + t;) in the form

n

ng(T+t)=Y (- 1)"—_i,§e"”f(v)v"dv=
=0 ./“')'

=0 7=9

L R T J ] i
3 (— 1)’(’—')’ \fore OTY iy~ § ny(T)(— 1)'(i)’-

T p J! ’” T
But t; =t — T, t > T, and therefore we finally have

ny(d) = Eonk(T)(l_LTy, or n(f)=§nk(r)[1_<1___tr_>":|. (7)

™ b
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This formula, derived for t > T, is identical to (3), which is valid for t s T, i.e.,
it is valid for all t 2 0. Therefore, the relation for n,(t) obtained from it by dif-
ferentiation in accordance with (5) is also valid for all t > 0. This relation is

()= :E:, n (G (L) (1- -’T—)k r=0, 1. (8)

Actually, this last relation can be derived from (2) simllarly by a series expansion
of et (just like (3) and (4)).

The prediction formulas — they predict the future and the past solely on the basis
of data at the present time — possess a number of interesting and important properties.

a) Inpractice we deal with.a series ng(T) that terminates, and therefore for t > 2T
all the expressions n,(t) become very large in absolute magnitude (this behavior of n,(t)
is due to the last nonvanishing term of the series, which in the limit t + = becomes
the principal term). This mathematical remark means that in principle prediction of
the behavior of n,(t) is impossible over times that exceed the present time of observa-
tions by two times. or more.

b) If we substitute instead of ny(T) the Poisson distribution

k
n (1) = N("Z!) e, k=0,1,..,

then for the quantities n,.(t) we again obtain the Poisson distribution
ne )= N o
rl

for each instant of time t. If ny(T) is a superposition of Poisson distributions, then
nt(t) is the same superposition of Poisson distributions. If in tHe limit

2 k
n (T) = jf(v)%’—e-"dv,

then

0

a (1) = jf(v) e~ dv,

c) There is a group property (which is a consequence of the more general group
property [6] of nonlinear prediction formulas), and it takes the following form. From
given {n,} at the time t, it is possible to determine the values of n, at the time t,
and from these data at the time t, in turn determine n, at the time t,;. This is equi-
valent to determination of {n,} at the time t,; directly from the {n,} given at the time
t;. In other words, step by step advance in time in the prediction problem is as a
result equivalent to prediction in one large step. Making the steps shorter does not
lead to any improvement (in fact it can lead to an accumulation of computing errors).

d) A further distinctive property of the prediction formulas obtained above is
their linearity in the quantities ng(T). The data at the present time (as at any time)
contain natural fluctuations, and to improve the prediction it is desirable to eliminate
them. By virtue of the linearity, it is possible, using data on n,.(t) over the entire
past interval (0, T), to determine by linear regression methods the best estimates for
nk(T), and only then predict the future on their basis.

e) Such regression must also make it possible in principle to predict the series
nk(T), i.e., extend it to larger values of k as yet unknown from observations, since
prediction in time is clearly associated with more accurate determination of the terms
of the series (4).

6. Conclusions

The main conclusion that can already be drawn is that prediction of the flare activity
of an aggregate is impossible to times that exceed 2T. This, in its turn, means that
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TABLE 1

R ‘
k |1|2|3|4,5|o|7 s|9|1o|11|12|13|14|15|n(r)
Plotad 290 |93 las 20 (22 22| ofw0] 7| 5| 5| a| 1| 1] 1545
lelades|agy 1 a3 | 46 |29 |22 |18 13} 10| 7| 5| 5| 4 1] 1| 1545

379 |76 )23) 7| 1| 1| 2 489
Orion 319 23| 7| 1] 1| 1] 489

the inverse problem of determining the frequency distribution function cannot, in prin-
ciple, be solved without additional assumptions about the form of this function (other-

wise prediction to the infinite future would be possible). It is true that this asser-
tion holds under the condition that the time of observations T is not so great as to
enable one to assume that all the flare stars of the aggregate have exhibited sufficient
numbers of flares and the expression (1) can be applied directly to them.

In Fig. 1 we show the curves n(t) and n,(t) calculated in accordance with the predic-
tion formulas (7)—(8) for times t that describe both the past (t < T) and future (t > T)
behavior of these quantities solely on the basis of observational data n(T), ny(T) known
at the present time (t = T) for the Pleiades and the Orion aggregate (the data for time
T are indicated by the black circles and are given in the corresponding upper rows of
Table 1). The curves are indiated in Fig. 1 by the arrows.

To obtain an approximate idea of the possible errors of prediction due to the un-
avoidable fluctuations in the observational data ny(T), we changed the data slightly
(the changed data are given by the bold numbers in the corresponding lower rows of
Table 1). The corresponding prediction curves begin to deviate strongly from those
calculated from the true observational data already at times less than 2T, doing this
moreover more rapidly the larger the value of k (this can be easily understood, since
the series (8) contains a "tail" of data ng(T) with k 2 r). The hatched regions in the
figure show the corridor of possible errors. The deviation in the prediction curves
for Orion is due to just a single, most probable (1) additional flare, that is, if one

i)

Number of flare stars -

o i T * I ‘ mo 1 ! T
Nominal time t

Fig. 1. Théoretical time dependence, calculated in accor-
dance with Egs. (8), of n,(t), the number of; flare stars
that have exhibited precisely r flares by the nominal
time t the curve n(t) is the total number of flare stars
found during the time t. The points corresponding to the
value t = T represent the observational data at the pre-
sent time.
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of two stars that have exhibited seven flares each suddenly exhibits one more flare.

The most reliable prediction — almost to 2T — is realized for the number of flare
stars, n(t), which statistically is the richest quantity and therefore least subject
to fluctuations. Its behavior must asymptotically approach the estimate of the total
number of flare stars in the aggregate.

In the following pafer we shall make a comparison of the theoretical curves with
the observational data n,(t) relating to the epoch of observations (0, T) with a view to
the possible improvement of the numerical values of nk(T) by linear regression methods.
Here we emphasize once more that as regards the form of the distribution function f(v)
of the flare stars with respect to the true frequencies no assumptions were made at
all apart from the condition of its being independent of the time.
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