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1. Introduction

For centuries mathematicians have been interested in curves
that can be constructed by simple mechanical instruments.
Among these curves are various cycloids used by Apollonius
around 200 B.C. and by Ptolemy around 200 A.D. to describe
the apparent motions of planets. The simplest cycloid is the
curve traced out by a point on the circumference of a circular
disk that rolls without slipping along a horizontal line; it
forms a sequence of arches resting on the line, as shown in
Figure 1.

Let S denote the area of the region above the line and
below one of these arches (shown shaded in Figure 1). A
routine use of integral calculus reveals that S is three times
the area of the rolling circular disk, which we express sym-
bolically as follows:

(1) S= ×3
J

.

The derivation of this formula using integral calculus re-
quires parametric or Cartesian equations for the cycloid.

This paper solves the more general problem in which the
rolling circle is replaced by any regular polygon. The result
is obtained by a geometrical method, and the area formula
for the cycloid is obtained as a limiting case. We use the
formula for the area of a circular sector, but there is no need
to know the equations representing the cycloid.

2. Cyclogons

When a regular polygon rolls without slipping along a straight
line, a given vertex on its circumference traces out a curve we
call a cyclogon. Like the cycloid, a cyclogon consists of a se-
quence of arches resting on the line, as shown by the ex-
ample of a rolling pentagon in Figure 2.  Each arch, in turn,
is composed of circular arcs, equal in number to one fewer
than the number of vertices of the polygon. The arcs need
not have the same radius.

If S denotes the area of the region above the line and
below one of these arches, we will show that, in place of (1),
we have the elegant and surprising result
(2) S=⊗+ ×2

J
,

where ⊗ denotes the area of the rolling polygon and 
J

 is
the area of the disk that circumscribes the polygon. The circle
can be regarded as the limiting case obtained by letting the
number of edges increase without bound in a regular poly-
gon. Similarly, the cycloid is the limiting case of a cyclogon.
Equation (1) for the area of the region under one arch of a
cycloid is now revealed as a limiting case of Equation (2).

We begin with two simple examples, a rolling triangle,
and a rolling square.

3. Rolling equilateral triangle

Figure 3 shows one arch of a cyclogon traced out by a rolling
equilateral triangle whose edges have length a. The region
under this arch and above the line consists of two equal circu-
lar sectors of radius a and one equilateral triangle. Each circu-
lar sector has area (π/3)a2 which is also the area of the circular
disk that circumscribes an equilateral triangle of edge-length
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Figure 1.  Cycloid traced out by a point on the circumference of a rolling
circle.

Figure 2. Cyclogon traced out by a vertex on the boundary of a rolling
regular pentagon.
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a. Therefore

S a= + × = + ×area of area of ,∆ ∆2
3

22π J
which proves (2) in this case.

4. Rolling square

Figure 4 shows a cyclogon traced out by a rolling square. The
region under this arch consists of two right triangles plus three
circular quadrants, two of radius a (the edge-length of the square),
and one of radius a 2  (the diagonal of the square). The two
right triangles have total area a2, the area of the rolling square,
and the total area of the three circular quadrants is

2
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× + = ×
F
HG
I
KJ = ×

π π
πa a ac h J

.

Therefore we have S a= + ×2 2
J

, which proves (2) in this
case as well.

5. Rolling n-gon

In the general case of a regular polygon with n vertices, the
region under one arch of the cyclogon consists of n – 2 tri-
angles and n – 1 circular sectors, each subtending an angle
of 2π/n radians.

The n – 2 triangles can be regarded as “footprints” left by
the triangular pieces obtained by dissecting the original poly-
gon with n – 3 diagonals from a given vertex to each of the
nonadjacent vertices, as illustrated in Figure 5 for n = 6.
The sum of the areas of these triangles is equal to the area of
the region enclosed by the regular polygon. This is illus-
trated for the regular hexagon in Figure 6.

The radii of the circular sectors are the lengths of the
segments from one vertex to each of the remaining n – 1
vertices. A sector of radius rk subtending an angle of 2π/n
radians has area πr nk

2 / , so the sum of the areas of the n – 1
sectors is equal to

π

n
rk

k

n
2

1

1

=

−

∑ .

In the next section we will show that the sum of the squares
of these radii is equal to 2nR2, where R is the radius of the
circle that circumscribes the polygon. Therefore the sum of
the areas of the sectors is equal to 2πR2, which is twice the
area of the circumscribing disk. In other words, (2) is a con-
sequence of the relation

(3) r nRk
k

n
2

1

1
22

=

−

∑ = .

6. An extension of the Pythagorean
Theorem for regular polygons

The result in (3), which is needed to calculate the sum of the
areas of the circular sectors in the foregoing section, is of

Figure 3. One arch of a cyclogon traced out by a rolling equilateral triangle.

Figure 5. “Footprints” left by triangular pieces of a rolling hexagon.

Figure 6. Triangular dissection of a regular hexagon and distribution of
its footprints.

Figure 4. One arch of a cyclogon traced out by a rolling square.
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independent interest because it reduces to the Pythagorean
theorem when the regular polygon is a square. The authors
have not been able to locate this surprising theorem in any
published work, so it may be new.

Theorem. The sum of the squares of the n – 1 segments drawn
from one vertex of a regular n-gon to the remaining vertices is
equal to 2nR2, where R is the radius of the circumscribing circle.

7. Proof for regular polygons with an even
number of sides

The proof for even n makes repeated use of the Pythagorean
Theorem. It is illustrated for the case n = 10 in Figure 7,
which shows nine segments drawn from one vertex of a regu-
lar decagon to the other nine vertices.

In Figure 7 there are four segments, labeled as r1, r2, r3, r4,
and four mirror images, plus the diameter of length 2R, so
the sum in question is

(4) 2 42 2

1

4

r Rk
k

+
=

∑ .

Figure 8 shows two segments from the opposite extremity of
the diameter to consecutive vertices. By symmetry with re-
spect to a horizontal diameter, these segments have lengths
r1 and r2. The new segment r1 meets the old segment r4 on
the circle and, together with the diameter, forms a right tri-
angle with hypotenuse 2R. (Here we use the fact that any
triangle inscribed in a semicircle is a right triangle with the
diameter as hypotenuse.) Applying the Pythagorean Theo-
rem to this right triangle we find

(5) r r R1
2

4
2 24+ = .

Similarly, the new segment r2 intersects the old segment r3
and forms another right triangle with hypotenuse 2R. Ap-
plying the Pythagorean Theorem once more we find

(6) r r R2
2

3
2 24+ =

so the sum in (4) is equal to

2 4 16 4 202

1

4
2 2 2 2r R R R Rk

k=
∑ + = + =

which proves the Theorem for n = 10.
   In the general case of even n, one of the n – 1 segments is
the diameter 2R of the circumscribing circle, and the other
n – 2 segments form (n – 2)/2 pairs symmetrically located
with respect to the diameter. The same argument just given
for the case n = 10 shows that

2 4
2

2
4 4 22

1

2 2
2 2 2 2r R

n
R R nRk

k

n

=

−( )

∑ + =
−

+ =
/

c h
which proves the theorem for every even n.This proof does
not work if n is odd.

8. Proof for regular polygons with an odd
number of sides

A different method that applies to all regular polygons with
an odd number of sides is illustrated for a regular heptagon
in Figure 9. The three segments and their mirror images in
the diameter are the 6 segments drawn from one vertex of a
regular heptagon to the other 6 vertices. We wish to prove
that 2 141

2
2
2

3
2 2r r r R+ + =c h , or that

(7) r r r R1
2

2
2

3
2 27+ + = .

We apply the law of cosines to each of three isosceles tri-
angles in Figure 9 having a vertex at the center of the hepta-
gon, two edges of length R and base of length rk, where k = 1,
2, 3. The corresponding vertex angles are θk, where θ1 = 2π/7,
θ2 = 4π/7, θ3 = 6π/7. The law of cosines for the isosceles
triangle with vertex angle θk states that

Figure 7. Nine segments drawn from one vertex of a regular decagon to
the other nine.

Figure 8. Rearrangement of segments r1 and r2 in Figure 7.
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(8) r R Rk k
2 2 22 2= − cos θ

so the sum of these equations gives us

(9) r R Rk k
kk

2 2 2

1

3

1

3

6 2= −
==

∑∑ cos θ .

But, by a trigonometric identity described below in (12), the
sum of cosines is equal to –½, so (9) implies (7).

In the general case of a regular polygon with 2n+1 sides
we wish to prove that

(10) r n Rk
k

n
2 2

1

2 1= +( )
=

∑ .

In this case we apply the law of cosines to n isosceles tri-
angles, using (8) for each of these triangles, where now θk =
2πk/(2n + 1). Instead of (9) we have the equation

(11) r n R Rk
k

n

k
k

n
2

1

2 2

1

2 1 2
= =

∑ ∑= −( ) − cosθ .

In this case we have the following identity (which we prove
below in Section 9),

(12) cosθk
k

n

=

∑ =−
1

1
2

,

so (11) reduces to (10).

9. Origin of the trigonometric identity (12)

The trigonometric identity in (12) can be written as

(13) 2 1 0
1

cos θk
k

n

=

∑ + =

where θk = 2πk/(2n + 1). This is a consequence of a more
general trigonometric identity

(14) cos
sin cos

sin
2

1

1

k
m m

k

m

θ
θ θ

θ
( )=

+( )

=

∑ ,

which holds for any positive integer m and any θ that is not
an integer multiple of π. (See Exercise 32, p. 106, of Apostol’s
Calculus, Vol. I, 2nd ed., John Wiley & Sons, Inc, 1967.) If
we take θ= π/m the right member vanishes and (14) becomes

(15) cos
2

0
1

πk
mk

m F
HG
I
KJ=

=

∑ .

When m is odd, say m = 2n + 1 the last term in the sum is
equal to 1. The remaining 2n terms can be arranged in n
pairs, by coupling the terms with k and m – k, which have the
same cosine. Consequently (15) can be written as

2
2

2 1
1 0

1

cos
πk

nk

m

+
F
HG
I
KJ+ =

=

∑ ,

which is the same as (13).

Note. The foregoing method, using the law of cosines,
also works if the polygon has an even number of sides, say
2n + 2 sides, but one minor change is needed. There are
now 2n + 1 segments from a given vertex to the remaining
vertices. One of these is a diameter, and the other 2n can be
arranged in pairs by coupling each segment with its mirror
image in that diameter. However, we do not give further de-
tails because the proof presented in Section 7 is more el-
ementary.

10. Alternate proof for a regular pentagon

An alternate proof for a regular pentagon can be given by a
method that is of interest because it makes use of Ptolemy’s
remarkable theorem on cyclic quadrilaterals (quadrilaterals
inscribed in a circle). Ptolemy’s theorem states that, for any
cyclic quadrilateral, the product of the lengths of the diago-
nals is equal to the sum of the products of the lengths of
opposite sides. (A simple proof of Ptolemy’s theorem can be
found in the Workbook that accompanies the videotape Sines
& Cosines, Part III, produced by Project MATHEMATICS!,
Caltech, 1994. The videotape also gives a computer animated
version of this proof.)

Figure 10 shows a regular pentagon imbedded in a regular
decagon with edges of length r1. The segments r2 and r4 and
their mirror images in a diameter 2R are the four segments
drawn from one vertex of the regular pentagon to the other
four vertices. We are to prove that r r r r R2

2
4
2

4
2

2
2 210+ + + =  or

the equivalent statement

(16) r r R2
2

4
2 25+ = .

Apply Ptolemy’s theorem to the cyclic quadrilateral in Fig-
ure 10 with two intersecting diagonals of length r2 to obtain

(17) r r r r2
2

1 3 1
2= + .

Figure 9. Regular heptagon with edge r1 inscribed in a circle of radius R.
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Figure 11. The isosceles triangle with equal edges r3 and base R is similar
to that with equal edges R and base r1.

Next, refer to the two similar isosceles triangles shown in
Figure 11, and equate ratios of corresponding sides to get
R/r1 = r3/R, or

(18) r r R1 3
2= .

Figure 10. A cyclic quadrilateral with three edges r1, one edge r3, and
two diagonals r2.
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Substitute (18) in (17) and then use the Pythagorean relation
r r R1

2
4
2 22+ =( )  to obtain

r R r R R r R r2
2 2

1
2 2 2

4
2 2

4
24 5= + = + − = − ,

which implies (16). 


