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1. INTRODUCTION. In his delightful book Mathematical Snapshots, Steinhaus [1]
describes the simple, engaging construction illustrated in Figure 1. Wrap a piece of
paper around a cylindrical candle, and cut it obliquely with a knife. The cross section
is an ellipse, which becomes a sinusoidal curve when unwrapped.

Figure 1. An elliptical cross section of a cylinder becomes sinusoidal when unwrapped.

The same idea can be demonstrated with a safer instrument. Take a cylindrical paint
roller, dip it at an angle in a container of paint or water color, and roll it on a flat surface.
The roller prints a sinusoidal wave pattern as shown in Figure 2.

Figure 2. A paint roller used to print sinusoidal waves on a flat surface.

Now imagine the elliptical cross section replaced by any curve lying on the sur-
face of a right circular cylinder. What happens to this curve when the cylinder is un-
wrapped?

Consider also the inverse problem, which you can experiment with by yourself:
Start with a plane curve (line, circle, parabola, sine curve, etc.) drawn with a felt pen
on a rectangular sheet of transparent plastic, and roll the sheet into cylinders of dif-
ferent radii. What shapes does the curve take on these cylinders? How do they appear
when viewed from different directions? A few trials reveal an enormous number of
possibilities, even for the simple case of a circle.

This paper formulates these somewhat vague questions more precisely, in terms
of equations, and shows that they can be answered with surprisingly simple two-
dimensional geometric transformations, even when the cylinder is not circular. For
a circular cylinder, a sinusoidal influence is always present, as exhibited in Figures
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1 and 2. And we demonstrate, through examples, applications to diverse fields such
as descriptive geometry, computer graphics, printing, sheet metal construction, and
educational hands-on activities.

Starting with section 9, we also investigate what happens to a space curve un-
wrapped from the lateral surface of a right circular cone. For example, a plane cuts
the cone along a conic section, and we can analyze the shape of the corresponding
unwrapped conic. This leads to a remarkable family of periodic plane curves that ap-
parently have not been previously investigated. The family is described by a polar
equation resembling that for a conic section. We call members of this family general-
ized conics; limiting cases include all ordinary conic sections, as well as the sinusoidal
curves mentioned earlier.

2. UNWRAPPING AN ELLIPSE FROM A CIRCULAR CYLINDER. Before
turning to the general problem, let’s analyze the foregoing sinusoidal construction.
Cut a right circular cylinder of radius r by a plane through a diameter of its base at
angle of inclination β, where 0 < β < π/2. The example in Figure 3a shows part of
the elliptical cross section and a wedge cut from the cylinder. A vertical cutting plane
parallel to the major axis of the ellipse intersects the wedge along a right triangle T
(shown shaded) with base angle β.

When the lateral surface of the cylinder is unwrapped onto a plane, the circular base
unfolds along a line we call the x-axis. Here x is the length of the circular arc measured
from point A at the extremity of the base diameter to point B at the base of triangle T ,
as shown in Figure 3a. The base of T has length r sin(x/r), and its height is h sin(x/r)

where h = r tan β, so the unwrapped curve is the graph of the function

u(x) = h sin
x

r
,

representing a sinusoidal curve with period 2πr and amplitude h. For fixed r the am-
plitude h increases with β.

(a) (b)
A

x
B

r β

�T

0 x πr

−u(x) = h sin x
r

Figure 3. The circular arc AB of length x in (a) unwraps onto the line segment [0, x] in (b). The altitude of
triangle T unwraps onto the height u(x).

An adjacent arch below the x-axis comes from unwrapping the second symmetri-
cally located wedge. Volume calculations of cylindrical wedges like these were con-
sidered by Archimedes and are analyzed in more detail in [2], where unwrapping of a
cylinder is also used to deduce the quadrature of a sine curve without integral calculus.

3. CURVE OF INTERSECTION OF TWO CYLINDERS. A cylinder is any sur-
face generated or swept out by a straight line moving along a plane curve and re-
maining parallel to a given line. The curve is called a directrix of the cylinder, and
the moving line that sweeps out the cylinder is called a generator. The directrix is not
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unique because any plane cuts a given cylinder along a plane curve that can serve as di-
rectrix. When the cutting plane is perpendicular to the generators we call the directrix
a profile of the cylinder.

A curve in the xy-plane has an implicit Cartesian equation of the form

m(x, y) = 0.

In xyz-space this equation describes a cylinder having this profile, with generators
parallel to the z-axis. Similarly, an equation of the form p(x, z) = 0 (with y missing)
describes a cylinder with generators parallel to the y-axis, whereas one of the form
q(y, z) = 0 (with x missing) describes a cylinder with generators parallel to the x-
axis.

Start with a vertical cylinder in xyz-space with equation m(x, y) = 0, which we call
the main cylinder, and locate the coordinate axes so that the profile passes through the
origin, and the z-axis lies along a generator. Intersect the main cylinder with a horizon-
tal cylinder p(x, z) = 0, which we refer to as the cutting cylinder. Their curve of inter-
section C is the set of points (x, y, z) that satisfy both m(x, y) = 0 and p(x, z) = 0.
Let Cp denote the profile of the cutting cylinder, which shows what C looks like when
viewed along the generators of the cutting cylinder (see Figure 4a). We call the xz-
plane the viewing plane and the equation p(x, z) = 0 the profile equation.

(a) (b)

p(x, z) = 0

cutting cylinder

viewing plane

z
main cylinder

m(x, y) = 0

m(x, y) = 0

C p

C

y

x

y

s(t)
P

t x = s(t)

Figure 4. (a) The main cylinder and an orthogonal cutting cylinder intersect along C . (b) Point P on the
horizontal profile projects onto (t, 0) and unwraps onto (s(t), 0).

4. UNWRAPPING A CURVE FROM ANY CYLINDER. Now unwrap the main
cylinder onto the xz-plane, which we describe as the unwrapping plane. A curve C on
the cylinder is printed onto an unwrapped curve Cu in the xz-plane. It has an equation
of the form u(x, z) = 0, its unwrapping equation, that we shall determine from the
profile equations m(x, y) = 0 and p(x, z) = 0 that define C .

We use the fact that every cylinder is a developable surface, hence unwrapping pre-
serves distances. In particular, any arc of length s on the (horizontal) profile m(x, y) =
0 gets printed onto a line segment of the same length on the x axis.

To formulate this in terms of equations, imagine each point P on the profile of
the main cylinder described in terms of new parameters t and s(t), where s(t) is the
arclength of the portion of the profile joining the origin to P , and t is the projection of
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that arc on the x-axis. Unwrapping the cylinder prints point P onto a point of the xz-
plane with coordinates (s(t), 0). Hence any other point on curve C at height z above
P is printed onto the point (s(t), z), where z satisfies the profile equation p(t, z) = 0.
Consequently, in the unwrapping equation u(x, z) = 0, x and z are related as follows:
x = s(t) and z satisfies p(t, z) = 0. We plot t on the x-axis.

To express u directly in terms of p, we consider portions of C for which the function
x = s(t) has an inverse, so that t can be expressed in terms of x by the relation t =
s−1(x). Under these conditions, we have the following theorem:

Theorem 1. For a curve C as described, the profile equation p(t, z) = 0 for Cp and
the unwrapping equation u(x, z) = 0 for Cu are related as follows:

u(x, z) = p(s−1(x), z) (1)

p(t, z) = u(s(t), z). (2)

When curves Cp and Cu are described by explicit equations,we use the same letters
p (for profile) and u (for unwrapping), and write z = p(t) and z = u(x), respectively.
In this case (1) and (2) become

u(x) = p(s−1(x)), p(t) = u(s(t)).

In other words, to obtain the profile function p(t) from u(x), simply replace the ar-
gument x with the arclength s(t). Conversely, to obtain the unwrapping function u(x)

from p(t), simply replace the argument t with the inverse s−1(x). The following spe-
cial case is worth noting. It is illustrated in Examples 1 and 2.

Corollary. For the linear unwrapping function u(x) = x, the profile function is the
arclength function: p(t) = s(t). And for the linear profile function p(t) = t , the un-
wrapping function is the inverse of the same arclength function: u(x) = s−1(x).

5. UNWRAPPING A CURVE FROM A CIRCULAR CYLINDER. Figure 5 il-
lustrates these ideas when the main cylinder is a right circular cylinder of radius r . In
Figure 5c, a circular arc of length rθ is unwrapped onto a segment of length x , and
its horizontal projection has length t = r sin θ . Because θ = x/r , the arclength func-
tion is x = s(t) = r arcsin(t/r), its inverse is t = s−1(x) = r sin(x/r), and Theorem
1 becomes:

(a) (b) (c)

viewing
plane

0

C p

C

t

z

0

C

Cu

z

unwrapping
plane

θ
r

x = rθ
t = r sin θ

Figure 5. (a) Curve C on a circular cylinder and its horizontal profile C p on a tangent viewing plane. (b) The
unwrapped curve Cu obtained by rolling the cylinder along the unwrapping plane. (c) A point on a circle
projects onto point t = r sin θ , but unwraps onto point x = rθ .
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Theorem 2. On a right circular cylinder of radius r , let C be a curve defined by the
profile Cp of a horizontal cutting cylinder, and let Cu denote its unwrapped image.
Then the profile equation p(t, z) = 0 for Cp and the unwrapping equation u(x, z) = 0
for Cu are related as follows:

u(x, z) = p
(

r sin
x

r
, z

)
, (3)

p(t, z) = u

(
r arcsin

t

r
, z

)
. (4)

This shows that the sine function is always present when an arbitrary curve is un-
wrapped from a right circular cylinder onto a plane. When Cp and Cu are described by
explicit equations, say z = p(t) and z = u(x), then (3) and (4) become

u(x) = p
(

r sin
x

r

)
, (5)

p(t) = u

(
r arcsin

t

r

)
. (6)

When r = 1, arcsin t = s(t), the length of the circular arc whose sine is t .
Now we apply Theorem 2 to some simple examples.

Example 1 (Linear profile function p(t) = ct). In this case, the cutting cylinder is a
plane through the line z = ct , where c is constant. From (5) we find that the unwrap-
ping function is u(x) = cr sin(x/r), whose graph is a sinusoidal curve with period
2πr .

If the cutting plane is inclined at an angle β with a horizontal diameter of the
cylinder, then c = tan β and the unwrapping function is u(x) = h sin(x/r), where
h = r tan β, in agreement with the result obtained earlier by analyzing Figure 3. The
shape of the cross section curve C itself depends on the direction from which it is
viewed. When viewed along the edge of the cutting plane we see the profile Cp as a
line segment. In a later example we show that when viewed from any direction the
cross section cut by a plane is, as expected, always an ellipse (possibly degenerate).

Example 2 (Linear unwrapping function u(x) = cx). This example explains what
happens when a straight line on a transparency is rolled onto a cylinder of radius r .
The corresponding profile function obtained from (6) is

p(t) = cr arcsin
t

r
.

Because distances are preserved when the cylinder is unwrapped, a line segment on
the unwrapped cylinder (the shortest path between its endpoints) becomes a geodesic
arc (the shortest path) on the cylinder, no matter how tightly it is rolled. In other words,
on any right circular cylinder the profile of a geodesic arc is part of an arcsine curve.
Figure 6a shows the line u(x) = x in the unwrapping plane, and Figures 6b–e show the
profile of the geodesic arc on cylinders of decreasing radii. Again we see sinusoidal
curves, but they are flipped sideways, as predicted by the corollary to Theorem 1.
The dashed curve in Figure 6d indicates the portion of the geodesic arc that lies on
the “rear” of the cylinder. The two repeated curves in Figure 6e represent different
branches of the arcsine function.
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This suggests a simple educational hands-on activity that can engage young students
while they learn that a geodesic on a circular cylinder is always part of a circular helix.
Use a felt pen to draw a line segment on a transparency, roll it into a circular cylinder,
view the profile in various directions, and watch the sine waves change shape as the
radius of the cylinder varies.

(a) (b) (c) (d) (e)

Figure 6. A line segment (a) wraps onto a geodesic. In (b)–(e) geodesic profiles (arcsine curves) are shown
on cylinders of decreasing radii. The dashed curves in (d) and (e) are on the rear half of the cylinder.

Example 3 (Parabolic cutting cylinder). Figure 7 shows a quadratic profile equation
p(t) = ct2 for some constant c > 0. By (5) the corresponding unwrapping function is

u(x) = cr 2 sin2 x

r
. (7)

z

C

C p

t

z

Cu

x

Figure 7. Curve C cut by a parabolic cylinder, with profile C p and unwrapped curve Cu .

Examples of this type have practical applications. To illustrate, take a rectangular
piece of sheet metal cut along the curve described by (7), and roll it to form a circular
cylinder of radius r . The curve C cut out on the resulting cylinder indicates exactly
where it will intersect a parabolic “gutter” having profile p(t) = ct2.

Example 4 (Wrapping a circle onto a cylinder). On a sheet of transparent plastic,
draw a unit circle, and roll the sheet into a circular main cylinder. What does the
wrapped circle look like when viewed from the side? The circle wraps onto a curve C
and we want its horizontal profile Cp. The upper half of the unwrapped unit circle can
be described by the unwrapping function

u+(x) =
√

1 − x2,
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and the lower half by u−(x) = −√
1 − x2, shown dotted in Figure 8a. Both halves

can be described by the implicit equation u2(x) = 1 − x2. From (5) we see that the
corresponding profile functions are p±(t) = u±(r arcsin(t/r)), both of which can be
described by the implicit equation

p2(t) = 1 −
(

r arcsin
t

r

)2

.

They depend on the radius of the main cylinder. In Figures 8b–f the cylinder is turned
(for ease in displaying) so that its axis is horizontal, and the corresponding graph of
p+(t) is shown for various values of r . The flipped graph of each p−(t) (not shown)
is the mirror image reflection through the horizontal dashed line. In Figures 8c–f the
dashed curves lie on the rear half of the cylinder and are hidden from view.

(a)

(b)

(c)

(d) (e) (f)

Figure 8. Rolling a circle on a transparency onto cylinders with decreasing radii.

6. ROTATING THE MAIN CYLINDER. On a circular cylinder of radius r , take a
curve C with explicit profile function z = p(t). Rotate the cylinder through an angle
α about its axis, but keep the viewing plane fixed. The profile function of the rotated
curve on the viewing plane depends on α, and we denote its ordinates by zα . The next
theorem describes zα in terms of p.

Theorem 3. On a cylinder of radius r , take a curve C with profile function z = p(t)
on the viewing plane. If the cylinder is rotated about its axis through an angle α, the
rotated curve on the same viewing plane has profile function

zα = p
(
t cos α +

√
r 2 − t2 sin α

)
. (8)

Proof. Rotation of the cylinder through an angle α is equivalent to shifting the arc-
length x = rθ by an amount rα. Therefore, if the unwrapping function of C is u(x),

rotation of the cylinder through an angle α (measured clockwise when viewed from
above) replaces x with x + rα, and the unwrapping equation of rotated C becomes

zα = u(x + rα) = p

(
r sin

x + rα

r

)
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by (5). But

r sin
( x

r
+ α

)
= r sin

x

r
cos α + r cos

x

r
sin α.

In terms of t = r sin(x/r), we have r cos(x/r) = √
r 2 − t2, and the foregoing equa-

tion for zα becomes

zα = p

(
r sin

x + rα

r

)
= p

(
t cos α +

√
r 2 − t2 sin α

)
,

which proves (8). Note that z0 = p(t).

It is not surprising that the combination t cos α + √
r 2 − t2 sin α in (8) resembles

the right-hand side of the equation x ′ = x cos α + y sin α for changing coordinates
from an xy-system to an x ′ y′-system by rotation of axes through an angle α.

We leave it to the reader to formulate the result corresponding to (8) when the profile
is given in implicit form p(z, t) = 0.

Corollary (Perpendicular view). When α = π/2, we get the profile function

zπ/2 = p
(√

r 2 − t2
)
.

Example 5 (Rotated view of a slanted plane cut). If p(t) = t , which corresponds to
cutting the original cylinder by a plane inclined at 45◦, relation (8) translates to

zα = t cos α +
√

r 2 − t2 sin α,

which implies that

z2
α − 2zαt cos α + t2 = r 2 sin2 α.

As expected, this represents an ellipse (possibly degenerate) in the t zα-plane. Ex-
amples are shown in Figure 9. When α = 0 the profile is a line segment with equation
z = t , and when α = π/2 it is the circle described by z2 + t2 = r 2.

Example 6 (Rotated view of a parabolic cut). In this case p(t) = ct2 and (8) takes
the form

zα = c
(
t cos α +

√
r 2 − t2 sin α

)2
.

Figure 9. Various profiles of a rotating inclined ellipse. The dashed portions lie on the rear half.
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For c = 1, Figure 10 shows the profile curve Cp for various values of α. Surpris-
ingly, when the cylinder is rotated through a right angle, the profile is the mirror image
of the original parabola reflected through the line z = r 2/2.

α = 0 α = π/6 α = π/4 α = π/3 α = π/2

Figure 10. Rotated views of a parabolic intersection are depicted. In a perpendicular direction we see the
original parabola flipped upside down.

7. DRILLED CYLINDERS. Drill a hole through the main cylinder of radius r with
a circular cylindrical drill of radius a whose axis is perpendicular to the viewing plane
and at distance d from the axis of the given cylinder, where 0 ≤ d ≤ r + a. The edge of
the hole is a curve C on the given cylinder that appears as part of a circle when viewed
along the axis of the drill. A plane through the axis of the main cylinder parallel to the
viewing plane divides the cylinder into two parts, a “front portion” and a mirror image
“rear portion.” Curve C also consists of two parts, one lying on the front portion and
its mirror image on the rear portion. The two parts can be connected or disconnected,
depending on the size and position of the hole. Also, the corresponding unwrapped
curve Cu is symmetric about the vertical line x = πr/2.

Place the axis of the drill so it intersects the t-axis of the viewing plane orthogonally
at (d, 0). To find the unwrapping function z = u(x) of C , first we find the profile
function z = p(t), then by (6) we have u(x) = p(r sin(x/r)). When r = 1, we have
u(x) = p(sin x).

To determine p(t), note that each projected point (t, p(t)) in the viewing plane lies
on a circle of radius a with center at (d, 0), so p(t)2 + (d − t)2 = a2. Hence the upper
and lower halves of the circular hole have profile functions that satisfy

p2(t) = a2 − (d − t)2. (9)

The corresponding unwrapping functions satisfy

u2(x) = a2 −
(

d − r sin
x

r

)2
. (10)

The following examples display interesting families of unwrapped curves obtained
when a, d, and r are treated as parameters.

Example 7 (Drill of same radius as main cylinder; variable distance d). Take a =
r = 1 in (10), and let distance d decrease from 2 to 0. When d = 2, the drill is tangent
to the main cylinder at one point, which unwraps onto the single point (π/2, 0). For
d = 1, the unwrapping equation is

u2(x) = 2 sin x − sin2 x .
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As d decreases, the hole changes shape, reaching its maximum size when d = 0, at
which stage the drill’s axis passes through the axis of the main cylinder and

u2(x) = 1 − sin2 x = cos2 x .

Figure 11 shows the upper half of the unwrapped curve for a few decreasing values of
d. Each curve shown in Figure 11 includes the unwrapped symmetric image that comes
from the rear portion of the main cylinder, with vertical axis of symmetry x = π/2. In
each case the lower half (not shown) can be obtained by reflecting the curve through the
x-axis. Incidentally, the graph of z = | cos x |, together with its reflection z = −| cos x |
(|x | ≤ π/2), represents the unwrapped intersection of two perpendicular cylinders of
unit radius. In this case the intersection itself is an ellipse (see [2]).

π/2 π/2 π/2 π/2

Figure 11. The unwrapped curve (upper half) is obtained by drilling a hole of unit radius through different
parts of the main cylinder of the same radius. Each is symmetric about the line x = π/2. The lower half (not
shown) is the reflection of the upper half through the x-axis.

Example 8 (Centered drill of variable radius). If r = 1 and d = 0, the hole is cen-
tered on the axis of the main cylinder, and (10) simplifies to u2(x) = a2 − sin2 x ,
which represents a family of unwrapped curves depending on the radius a of the hole.
In this example the geometry and the equation itself show that each unwrapped curve
is symmetric about the line x = 0. Figure 12 shows a few members of the family,

z =
√

a2 − sin2 x , for increasing values of a, from very small radius to very large ra-
dius. The case a = 1 gives the third curve, whose equation is z = |cos x |, also shown
in Figure 11.

0 0 0 0 0

Figure 12. The unwrapped image of the upper half of a hole of variable radius drilled through the axis of the
main cylinder is shown. Each is symmetric about the line x = 0. The lower half (not shown) is the reflection
of the upper half through the x-axis.

Example 9 (Rotated view of a drilled circular hole). We return to (9), which de-
scribes the projected view of the hole obtained by drilling a hole through the main
cylinder of radius r with a drill of radius a whose axis is perpendicular to the viewing
plane and at distance d from the axis of the given cylinder, where 0 ≤ d ≤ r + a.
What is the shape of the hole as projected on the viewing plane after the main cylinder
has been rotated through a right angle? Applying the general rotation formula in (8)
with α = π/2 and p(t) as given in (9), we find that the upper and lower halves of the
hole in the rotated cylinder satisfy the equation

z2 = a2 − (
d −

√
r 2 − t2

)2
. (11)
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This can be written as z2 = a2 − d2 − r 2 + t2 + 2d
√

r 2 − t2, or

(z2 − a2 + d2 + r 2 − t2)2 = 4d2(r 2 − t2),

a Cartesian equation of degree 4 in both t and z.
When d = r + a, the drill is tangent to the main cylinder. As d decreases towards

0 the projection of the rotated hole changes its appearance. When d = 0, the drill
passes through the axis of the main cylinder and the Cartesian equation reduces to
t2 − z2 = r 2 − a2, which represents an equilateral hyperbola if a �= r . The hyperbola
has a horizontal axis if a < r and a vertical axis if a > r . If a = r , the radius of the
drill is the same as that of the main cylinder and the rotated projected curves are the
pair of lines given by z = ±t .

Figure 13 shows how the projection changes its appearance when r = a = 1 and
the axis of the drill moves toward the axis of the main cylinder. In Figures 13a–d it
has the appearance of an expanding oval. In Figure 13e it becomes nonconvex, then
gradually deforms to resemble hyperbolas (Figure 13f). Finally the two axes intersect
when d = 0, when the projection becomes a pair of lines, a degenerate hyperbola
(Figure 13g).

(a) (b) (c) (d)

(e) (f) (g)

Figure 13. Profiles of the hole made by a drill of radius equal to that of the main cylinder, as the axis of the
drill moves toward the axis of the main cylinder, viewed from a direction perpendicular to the axis of the drill.

Figure 14 shows a corresponding sequence when r = 1 and a = 1/2. When d = 0
an equilateral hyperbola suddenly appears. When a > 1 the projections are like those
in Figure 14, but turned sideways by 90◦.

Figure 14. Profiles of the hole made by a drill of radius half that of the main cylinder, as the axis of the drill
moves toward the axis of the main cylinder, viewed from a direction perpendicular to the axis of the drill.
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8. TILTED CUTTING CYLINDER. Up to now we have studied the profile of a
curve C cut from the main cylinder by an orthogonal cutting cylinder. In descriptive
geometry and in applications to sheet metal work the cutting cylinder is not always or-
thogonal to the main cylinder but may be tilted at an angle β. For such applications we
want to know what the unwrapped version Cu looks like so we can cut the unwrapped
cylinder along this curve. To find Cu it suffices to determine the horizontal projec-
tion Cp, which is related to the profile of the slanted cutting cylinder. This relation is
provided by the following theorem, whose proof is omitted:

Theorem 4. Let C be the curve of intersection of a main cylinder with horizontal
profile y = m(t) that is cut by a cylinder tilted at an angle β, with profile function
z′ = q(t). Then the horizontal projection z = p(t) of Cp is related to the function
z′ = q(t) by the equation

q(t) = p(t) cos β + m(t) sin β. (12)

Special cases.

(a) If β = 0, this gives q(t) = p(t).

(b) If β = π/2, (12) becomes z′ = m(t). This is to be expected, because the view-
ing direction is along the axis of the main cylinder and every curve on the main
cylinder appears as part of its profile.

(c) If p(t) = 0, (12) simplifies to z′ = m(t) sin β, a scaled version of the profile
of the main cylinder. In particular, if the main cylinder has a circular profile,
m(t) = r − √

r 2 − t2, then when β �= 0 the relation z′ = m(t) sin β can also be
written as

t2

r 2
+

(
z′ − r sin β

r sin β

)2

= 1.

This is the equation of an ellipse with center at (0, r sin β) in the t z′-plane and
with semiaxes of lengths r and r sin β. In this case, curve C is a circle of radius
r on the main cylinder, and it appears as an ellipse when projected on a tilted
plane.

(d) If the main cylinder has a circular profile m(t) = r − √
r 2 − t2, then as r → ∞

the main cylinder becomes a plane, the quantity r − √
r 2 − t2 → 0, and (12)

becomes q(t) = p(t) cos β, as expected.
(e) When cos β �= 0, (12) can be solved for p(t) to give

p(t) = q(t) sec β − m(t) tan β, (13)

a linear combination of the two profile functions q(t) and m(t). In particular,
if the cutting cylinder is a circular cylinder of radius a cutting a main circu-
lar cylinder of radius r at angle β, then (13) holds with q(t) = √

a2 − t2 and
m(t) = r − √

r 2 − t2 .

Example 10 (Intersection of two circular cylinders). Now take the special case of
(e) in which a = r . Let z = p(t), and write (13) in the form

z + r tan β =
√

r 2 − t2(sec β + tan β)
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or

t2

r 2
+

(
z + r tan β

r(sec β + tan β)

)2

= 1.

This is the equation of an ellipse with center at (0, −r tan β) in the t z-plane and semi-
axes of lengths r and r(sec β + tan β). Because the projected curve Cp is an ellipse,
we know that the unwrapped curve Cu will be sinusoidal.

Example 11 (Tilted view of a geodesic). Example 2 revealed that a geodesic on a
right circular cylinder is a circular helix whose side view is a sine curve. On a cir-
cular cylinder of radius 1, the geodesic with unwrapping function u(x) = cx has
horizontal profile p(t) = c arcsin t , and the main cylinder has circular profile m(t) =
1 − √

1 − t2. Hence (12) gives

q(t) = c(arcsin t) cos β + (
1 −

√
1 − t2

)
sin β.

When tan β = c, the helix is viewed along one of its tangents of constant slope, and
this becomes

1

sin β
q(t) = arcsin t + (

1 −
√

1 − t2
)
.

The right member is easily shown to represent a cycloid, the path traced out by a point
on the circumference of a circular disk that rolls along a straight line, so the profile
q(t) describes a cycloid dilated in the z′ direction by the factor sin β.

This can also be demonstrated physically with a flexible spring, such as the toy
known as a “slinky.” By stretching the spring and viewing it from different directions
you can see the helix change its appearance from sine curve to curtate cycloid, to
cycloid, and to prolate cycloid.

9. UNWRAPPING CURVES FROM A RIGHT CIRCULAR CONE. The ex-
amples treated thus far involve curves unwrapped from a right circular cylinder. Now
we start with a curve C lying on the surface of a cone, and consider questions of the
following type: What is the shape of the image of C when the cone is unwrapped, that
is, tipped on a generator and rolled onto a plane, or onto another cone? How does
curve C appear when viewed from different directions?

All cones in this paper are right circular cones, and we analyze not only conic
sections, but any curve lying on the surface of such a cone. We employ three simple
geometric transformations: projecting the curve onto the ceiling plane (a plane orthog-
onal to the cone’s axis and passing through its vertex), scaling the ceiling projection
radially from the vertex, and compressing the polar coordinate angle.

We formulate the basic questions more precisely in terms of equations, and show
that they can be answered once the ceiling projection is known. We discuss interesting
curves on cones that are not conic sections, including geodesic curves and curves cut
by various cylinders.

Figure 15a shows two familiar curves on a cone. One is a circular cross section we
call a base, whose unwrapped image is a circular arc, the dashed curve in Figure 15b.
The other is an ellipse that unwraps to form a new plane curve, a generalized ellipse
shown in Figure 15b.

We now replace the ellipse in Figure 15a with a general curve C lying on the cone
and unwrap it onto a plane. In this plane, generators of the cone are mapped onto
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(a) (b)

β

base P

α

R(θ)

R(0)

R(0)

θ R(θ)

generalized ellipse

unwrapped base

Figure 15. (a) An elliptical cross section; (b) its unwrapped image on a plane.

radial lines emanating from the cone’s vertex. A point P on C is mapped onto a point
in the plane with polar coordinates (R(θ), θ), with the origin at the vertex of the cone,
where R(θ) is the distance of P from the vertex of the cone, and θ is the polar angle in
radians measured from a fixed radial line to that through the image of P . We can also
regard θ as being measured along the surface of the cone from the fixed generator to
the generator through P . Thus, (R(θ), θ) can be thought of as conical coordinates on
the cone itself.

The function R(θ) depends on C , and we formulate the following general problem:

Basic problem. For a given curve C on the cone, obtain an explicit formula for R(θ).
In particular, describe R(θ) when C is a conic section.

The analysis on a cone differs from that on a cylinder, but again depends on arc
length invariance, as indicated in the following special case.

10. UNWRAPPED BASE AND PRESERVATION OF ARCLENGTH. For any
finite portion of the cone with a circular base, as shown in Figure 16a, the unwrapped
image of the base is a circular arc with center at the cone’s vertex and radius equal to
the slant height s of that finite portion. In this simple case, the basic problem is easily
solved because the radial distance R(θ) is constant, R(θ) = R(0) = s.

Figure 16 also reveals a basic fact that plays a key role in solving the general prob-
lem. Let ρ denote the radius of the base in Figure 16a. When the base rolls through an
angle of ϕ radians, the corresponding portion of the base of arclength ρϕ unwraps onto
a circular arc of radius s and central angle that we denote by θ (Figure 16b). Because
the cone is a developable surface, distances are preserved when the cone is unrolled
onto a plane, so we have

sθ = ρϕ. (14)

It is easy to see that the relation between θ and ϕ is independent of ρ and s. In Figure
16a, α is half the vertex angle of the cone, and ρ is related to s by the equation

ρ = s sin α. (15)

Combining (14) and (15) we find a relation independent of ρ and s:

θ = ϕ sin α. (16)
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The simple relation (16), with 0 < α < π/2, occurs repeatedly in analyzing the shape
of any curve unwrapped from a cone. With k = 1/ sin α, (16) can be written as

ϕ = kθ. (17)

Thus, the sine of half the vertex angle determines the relation between ϕ and θ .

α

ρ

s

circular base circular arc

s
θ

ϕ

ρ

Figure 16. (a) Finite portion of a cone with slant height s; (b) unwrapping the surface of this finite portion.

When the cone is cut by a plane through a diameter of the base inclined at angle
β, the conic section is an ellipse, parabola, or hyperbola, depending on β. Figure 15a
shows an ellipse, which unwraps to form a generalized ellipse that oscillates about
the image of the base as shown in Figure 15b. An explicit formula for R(θ), which
depends on both β and the cone’s vertex angle, is given in (23).

11. REFORMULATED PROBLEM IN TERMS OF CEILING PROJECTION.
In Theorem 1 we analyzed a general curve on a cylinder by projecting it onto an
unwrapping plane parallel to the generators of the cylinder. To analyze a curve C lying
on a cone, we project it upward onto the horizontal ceiling plane, a plane orthogonal
to the axis of the cone and passing through its vertex V , as indicated in Figure 17.

Curve C projects onto a curve C0 in the ceiling plane that we describe with a po-
lar equation r = r(ϕ), where r(ϕ) is the radial distance measured from vertex V as
origin. The ceiling projection C0 is the profile of a vertical cylinder that intersects
the cone along C . Figure 17 reveals that the two distances R(θ) and r(ϕ) satisfy
r(ϕ) = R(θ) sin α, where α is half the vertex angle of the cone. This simple rela-
tion, together with (17), shows that the ceiling projection is the key that unlocks the
basic problem.

Theorem 5. Let C be a curve on the surface of a cone with vertex angle 2α. If the
ceiling projection C0 has polar equation r = r(ϕ), then the unwrapped image of C
has polar equation

R(θ) = kr(kθ), (18)

where k = 1/ sin α. Conversely, if R(θ) is known, then (18) determines r(ϕ):

r(ϕ) = R(ϕ/k)/k. (19)

Proof. The relation r(ϕ) = R(θ) sin α becomes r(ϕ) = R(θ)/k, which in view of (17)
gives (18) and (19).
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curve C axis

projection C0

ceiling plane V r(ϕ)

R(θ)

α

r(ϕ) = R(θ) sin α

R(θ) α

Figure 17. Curve C on the cone projects onto curve C0 in the ceiling plane with polar equation r = r(ϕ).

Note. Before discovering Theorem 5, we solved the basic problem for the special case
of an unwrapped conic, using a lengthy “brute force” analysis of the solid geometry
of the cone. To our surprise, the resulting formula for R(θ) in (23) resembled that
of an ordinary conic. An analysis of this formula suggested introducing the ceiling
projection, which applies not only to conic sections, but to any curve C lying on a
cone.

12. CEILING PROJECTION AND UMBRELLA TRANSFORMATION. Equa-
tion (18) is the end result of three transformations: projecting C onto C0, which pro-
duces r(ϕ); stretching each radial distance r(ϕ) by the factor k; and squeezing the
polar angle ϕ by the factor 1/k. The first two can be combined into one transformation
given by

R(θ) = kr(ϕ), (20)

which is a scaled version of the ceiling projection. To visualize (20) geometrically,
regard the cone as an “umbrella” that can be opened up flat onto the ceiling plane
by rotating each generator vertically upward about vertex V , as shown in Figure 18.
This rotation preserves radial distances from the vertex, but increases angles between
generators on the cone. Two generators separated by an angle θ measured along the
surface of the cone lie on two vertical planes through the axis making a dihedral angle
ϕ, and during the rotation the umbrella transformation stretches the angle between
them from θ to ϕ = kθ .

13. CONE TO CONE. The analysis used to prove Theorem 5 also treats the more
general case in which a curve C1 on one right circular cone with vertex angle 2α1

is unwrapped onto a curve C2 on another right circular cone having the same vertex,
but with vertex angle 2α2. When the vertex angle 2α2 is a straight angle, the second
cone becomes an unwrapping plane. When we unwrap one cone onto another it is
understood that we keep the cones tangent to each other along a common “rolling”
generator. The next theorem, whose proof we leave to the reader, relates the ceiling
projection functions of curves C1 and C2.
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curve C

scaled C0

projection C0ceiling plane V
R(θ) = kr(ϕ)

R(θ)

Figure 18. Umbrella transformation (20) maps curve C from the cone to a scaled version of projection C0.

Theorem 6. If the ceiling projection of curve C1 has polar equation r1 = r1(ϕ) and
that of curve C2 has polar equation r2 = r2(ϕ), then the two functions satisfy

r2(ϕ) = μr1(μϕ), (21)

where μ = sin α2/ sin α1.

When k2 = 1, cone 2 coincides with its ceiling plane, ϕ = θ , r2 = R, r1 = r , and
(21) turns into (18). Note also that μ < 1 if cone 1 has a larger vertex angle than cone
2, and, vice versa, μ > 1 if cone 2 has a larger vertex angle than cone 1.

14. UNWRAPPING A CONIC SECTION FROM A CONE ONTO A PLANE.
Now take C to be a conic section cut from a cone by a plane inclined at angle β with the
ceiling plane, where 0 ≤ β < π/2. The cutting plane intersects the axis of the cone at
a point O that we use as the center of a circular base of radius ρ (Figure 19). As before,
α is half the vertex angle of the cone, where 0 < α < π/2. In Figure 19, C is shown
as an ellipse, but the analysis also applies to a parabola or hyperbola. The generator
through point P on C intersects the base at point B whose polar coordinates in the
plane of the base are (ρ, ϕ), where ϕ is measured from radius O A, with A = (ρ, 0).
The case β = 0 corresponds to unwrapping the base, which was treated earlier.

Figure 19 also shows the ceiling projection C0 of conic C . The next theorem com-
pletely solves the unwrapping problem for a conic, and also includes a surprising result
in part (a).

Theorem 7. The ceiling projection of a conic section C is another conic C0 with the
following features:

(a) a focus at the vertex of the cone,
(b) a directrix at the line of intersection of the cutting plane and the ceiling plane,
(c) eccentricity λ = tan α tan β,
(d) polar equation

r(ϕ) = r(0)

1 + λ sin ϕ
. (22)
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Thus, if k = 1/ sin α, the unwrapped image of C on a plane has polar equation

R(θ) = R(0)

1 + λ sin(kθ)
, (23)

with R(0) = kr(0).

Proof. Let L denote the line of intersection of the cutting plane and ceiling plane. For
any point P on C let P0 denote its projection on C0. Let d be the distance from P0 to
L and r the distance from P0 to V , as depicted in Figure 19.

conic C

projected conic C0

O
ρ ϕ

A
B

P

α

h

P0

rV

ceiling plane

d β

directrix

L

cutting plane

Figure 19. Diagram for proving parts (a), (b), and (c) of Theorem 7. (The ceiling plane intersects the cutting
plane along the directrix L of the projected conic.)

We now show that the ratio r/d is tan α tan β, a constant (independent of P0) that
we denote by λ. This will prove (a), (b), and (c). Write the ratio r/d as

r

d
= r

h

h

d
,

where h is the distance from P to P0. From Figure 19 we see r/h = tan α and h/d =
tan β, so the foregoing equation becomes r/d = tan α tan β, as required. This ensures
that C0 is a conic with a focus at V and directrix L .

To derive (22), use the focus V as origin in the ceiling plane, and let r(ϕ) denote
the distance from V to the point on C0 with polar coordinates (r(ϕ), ϕ), where ϕ is
measured from a line through V parallel to L , as shown in Figure 20. We have shown
that C0 is a conic with eccentricity λ, hence the focal definition of conic gives r(ϕ) =
λd. But d = D − r(ϕ) sin ϕ, where D is the distance from the focus to the directrix,
hence r(ϕ) = λ(D − r(ϕ) sin ϕ), which implies that r(ϕ) = λD/(1 + λ sin ϕ). When
ϕ = 0 we get λD = r(0), which proves (22), and (23) follows from Theorem 5.
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focus
V

ϕ

r(ϕ) sin ϕ

r(ϕ)

d

D

directrix L

Figure 20. Diagram for deriving the polar equation of the projected conic C0.

Note. The ratio e = (sin β)/(cos α) is known to be the eccentricity of the conic section
C in Figure 19. It is easily verified that e = λ = 1 when α + β = π/2, that 0 < e < 1
and 0 < λ < 1 when α + β < π/2, and that e > 1 and λ > 1 when α + β > π/2.
Therefore conic C and its ceiling projection C0 are of the same type: ellipse, parabola,
or hyperbola. Although their eccentricities may differ, both are simultaneously less
than 1, equal to 1, or larger than 1.

In Theorem 7, the relations between the parameters λ and k as well as the angles
α and β imply the restrictions λ ≥ 0 and k ≥ 1. The inequality λ ≥ 0 is not serious,
because changing the sign of λ in (23) is equivalent to replacing θ with −θ , which
means the unwrapping occurs in the opposite direction. The restriction k ≥ 1 is more
serious because k = 1/ sin α. However, (23) is meaningful for all real λ and k and
gives a function R(θ), periodic in θ with period 2π/k, that represents a well-defined
curve, even if k < 1. This motivates the following notion of a generalized conic.

Definition. A plane curve described by a polar equation

R(θ) = R0

1 + λ sin(kθ)
, (24)

where R0 and λ are nonnegative constants and k is an arbitrary real constant, is called
a generalized conic. The curve is called a generalized ellipse, parabola, or hyperbola,
according as λ < 1, λ = 1, or λ > 1, respectively.

If k = 1, the cone is its ceiling plane, and (24) is the polar equation in this plane of
a conic with eccentricity λ and with one focus at the origin. If k > 1, Theorem 7 tells
us the curve in (24) is obtained by unwrapping a conic section of eccentricity λ from
a cone with vertex at the origin and vertex angle 2α, where sin α = 1/k. If k < 1, the
curve in (24) cannot be obtained by unwrapping a conic section from a cone onto a
plane, but it can be realized as the ceiling projection of a curve C on a cone K ′ with
vertex angle 2α′, where sin α′ = k and where C is obtained by wrapping a conic of
eccentricity λ from a plane onto K ′. In terms of equations, a conic with polar equation
(22) is the unwrapped version of a curve C on a cone K ′ with vertex at a focus of (22)
and with ceiling projection described by (24).

Incidentally, if a conic on one cone is wrapped onto another cone, the ceiling pro-
jection of the second cone is a generalized conic, as is seen from (21). Thus, wrapping
from cone to cone is no more general than wrapping from cone to plane, and vice
versa.

15. EXAMPLES OF GENERALIZED CONICS. Examples of these curves are
shown in Figures 21 through 26. In Figures 21 to 23, the angle θ runs through one
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k = 1.5, λ = 0.6 k = 5.5, λ = 0.22

Figure 21. Generalized ellipses, one period only. (For more periods, see Figure 24.)

k = 1.5, λ = 1 k = 1.15, λ = 1

Figure 22. Generalized parabolas, one period.

k = 1.5, λ = 1.6 k = 1.83, λ = 1.8

Figure 23. Generalized hyperbolas, one period. Both nappes are cut and unwrapped onto a plane.

period interval of length 2π/k, and in Figure 24 through more than one period inter-
val. In Figures 21 to 24, each example has k > 1 and can be obtained by unwrapping
a conic section from a cone onto a plane.

In Figures 25 and 26, each example has k < 1 (namely, k = 1/2) and cannot be
obtained by unwrapping a conic from a cone.

You can construct more examples for yourself by visiting the following interactive
web site: http://www.its.caltech.edu/~mamikon/genconic.html. A curve with k > 1

five periods eleven periods

Figure 24. Second generalized ellipse from Figure 21 (k = 5.5, λ = 0.22), with more than one period.
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(a) generalized
ellipse, λ = 0.8

(b) generalized
parabola, λ = 1

(c) generalized
hyperbola, λ = 1.4

Figure 25. Generalized conics with k = 0.5 in (24). (They cannot be obtained by unwrapping a conic from a
cone, but each is the ceiling projection of a conic wrapped from a plane onto a cone.)

Figure 26. Generalized ellipse in Figure 25a as the ceiling projection of a curve obtained by wrapping an
ellipse onto a cone with vertex angle π/3 to form a curve with two nonplanar loops.

can be used as a template for cutting and rolling a piece of paper into a cone having a
conic as a plane cross section. For example, rolling a template made from any curve
in Figure 21 can produce a right circular cone with the rolled curve becoming a planar
elliptical cross section.

Note. If the ceiling projection C0 of a curve C on a cone is a conic, C itself need not
be a conic. In fact, it is easy to verify that C is a conic if and only if a focus of C0 is at
the vertex of the cone.

16. LIMITING CASES. From a given cone one can obtain all possible ellipses and
parabolas as conic sections. This is not true of hyperbolas: only those arise whose
asymptotes intersect at an angle smaller than the vertex angle of the cone. By contrast,
all possible conics can be obtained as limiting cases of (23), as will be shown presently.

First we show that sinusoidal curves unwrapped from circular cylinders are limiting
cases of generalized conics. In the plane of the unwrapped cone (Figure 15b), the
difference y = R(0) − R(θ) is the radial distance from the image of the circular base
to the generalized conic. From (24) we have R0 = R(0), and we obtain

y = R(0)
λ sin(kθ)

1 + λ sin(kθ)
. (25)

Keep the radius ρ of the circular base fixed and keep the angle of inclination β fixed,
but let α → 0 so that the vertex of the cone recedes to infinity. Then the cone becomes
a cylinder of radius ρ (which can be regarded as the limiting case of a cone). What
happens to the right-hand side of (25) as α → 0? For small α we can approximate
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tan α by sin α, so λ = tan α tan β can be approximated by sin α tan β. The denominator
of (25) is very close to 1, so the right side of (25) has the approximate value

R(0) sin α tan β sin ϕ,

where ϕ = kθ . But, in view of (15), R(0) sin α = ρ, hence (25) is nearly the same (for
small α) as the limiting relation

y = ρ tan β sin ϕ = ρ tan β sin(x/ρ),

where x is the length of arc subtended by an angle ϕ on a circle of radius ρ. This
is a Cartesian equation of a sinusoidal curve cut from a circular cylinder of radius
ρ by a plane inclined at angle β. In other words, if the circular base of the cone is
kept fixed while the vertex recedes to infinity, the cone becomes a cylinder, and the
generalized ellipse unwrapped from the cut cylinder becomes a sinusoidal curve, as
noted in section 1.

The other limiting case is when α → π/2 and the cone flattens onto the ceiling
plane. In this case we keep R(0) and λ fixed, meaning that tan β = λ/ tan α. Then
tan α → ∞, β → 0, and k = 1/ sin α → 1, so the limiting value of polar equation
(24) is

R(θ) = R(0)

1 + λ sin θ
. (26)

This describes an ordinary conic section of eccentricity λ, in which R(θ) is the dis-
tance from a focus to the point (R(θ), θ) on the conic, as illustrated in Figure 20.
Geometrically, as α → π/2 and the cone flattens onto its ceiling plane, the conic sec-
tion of eccentricity λ turns into the conic described by (26), which is the ceiling conic
(22). Stated differently, as the cone flattens onto a plane, the limiting case of the conic
section coincides with the ceiling conic having its focus at the vertex, and it also coin-
cides with the limiting case of the generalized conic. All three types of conics—ellipse,
parabola, and hyperbola—with all possible values of the eccentricity, can occur in this
limiting case.

17. OTHER CURVES ON A CONE. Conic sections are widely studied, but there
are other interesting curves on a cone that we can analyze using our transformations.
In each of the next two examples, the curve is determined by specifying its ceiling
projection to be a spiral, and we find that the unwrapped curve is a spiral of the same
type.

Example 12 (Archimedean spiral C0). Here r(ϕ) = cϕ for some constant c > 0. In
the ceiling plane, spiral C0 intersects a given radial line at equidistant points, with
distance 2πc between consecutive intersections. Curve C spirals around the cone as
shown in Figure 27. From (18) we find that

R(θ) = ck2θ,

so the unwrapped curve is another Archimedean spiral with ck2 replacing c.

Example 13 (Logarithmic spiral C0). Now r(ϕ) = Aecϕ for positive constants A
and c. In the ceiling plane, the tangent line to the spiral at each point makes a constant
angle δ with the radial line to that point, where cot δ = c. From (18) we obtain

R(θ) = k Aeckθ ,
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Figure 27. A conical spiral with an Archimedean spiral as ceiling projection and as unwrapped curve.

hence the unwrapped curve is another logarithmic spiral with new constants. Its tan-
gent line makes a constant angle ψ with the radial line, where cot ψ = ck.

Example 14 (Geodesic on a cone). Because distances are preserved when a cone is
unwrapped, the image of a geodesic arc on a cone (the shortest path joining two points
on the surface) is a line segment in the plane of the unwrapped cone. To construct a
geodesic curve on a cone, start with a straight line and wrap it onto the cone. Figure
28a shows a line L and a point V not on L that we take as the vertex of an unwrapped
cone. The entire line has polar equation

R(θ) = d

cos θ
,

where d is the shortest distance from V to the line, and θ (measured as indicated)
varies from −π/2 to π/2. The plane determined by the line and point V can be rolled
into many right circular cones with V as a common vertex but with different vertex
angles, and the line is mapped onto a geodesic curve on each such cone. If the cone
has vertex angle 2α, the ceiling projection of this geodesic has polar equation

r(ϕ) = d/k

cos(ϕ/k)
,

where k = 1/ sin α and −kπ/2 < ϕ < kπ/2. Figures 28b and c show one example of
a geodesic and its ceiling projection. Figure 29 shows more ceiling projections.

(a) (b) (c)

V

L
d

θ

Figure 28. Line segment (a) wrapped onto a geodesic (b) on a cone, with ceiling projection (c).
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k = 1 k = 2 k = 2.5 k = 3 k = 4 k = 5

Figure 29. Ceiling projections of one line wrapped onto cones with different vertex angles (sin α = 1/k).

18. VERTICAL WALL PROJECTION. Analyzing the unwrapped version of a
curve on the surface of a cone is equivalent, by Theorem 5, to finding its ceiling pro-
jection. We turn now to examples in which the curve C is the intersection of the cone
with a horizontal cutting cylinder whose generators are parallel to the ceiling plane.
The projection of C on a vertical plane perpendicular to the generators is a profile of
the cylinder.

We choose such a plane through the axis of the cone and call it the wall plane. It
intersects the ceiling plane along a line that we designate as the t-axis, with its origin
at vertex V , as shown in Figure 30. The axis of the cone is designated as the z-axis,
but with its positive direction pointing down as indicated in Figure 30. If the cone is
flipped over and the ceiling plane becomes a horizontal “floor” plane, the coordinate
axes of the wall plane will be in traditional position, with the positive t-axis pointing
to the right, and the positive z-axis pointing up.

z-axis

curve C
wall projection

P1 P

h(t)

t

t

V ϕ

r(ϕ)

P0

α

ceiling projection

Figure 30. Relating the wall projection and ceiling projection of a curve on a right circular cone.

The cutting cylinder intersects the wall plane along a profile curve with implicit
equation of the form p(t, z) = 0. We call this curve the wall projection of C . A general
point P on C has as its ceiling projection the point P0 with polar coordinates (r, ϕ),
where ϕ is measured as indicated in Figure 30 and r = r(ϕ) is the ceiling function.
Point P also has wall projection P1 with coordinates (t, z) related by p(t, z) = 0. The
next theorem, which follows at once from Figure 30, relates the coordinates (t, z) of
P1 to the polar coordinates (r, ϕ) of P0.
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Theorem 8. On a right circular cone with vertex angle 2α, let c = tan α, and let C be
a curve with ceiling projection function r = r(ϕ) and wall profile p(t, z) = 0. Then
the coordinates are related as follows:

t = r sin ϕ, z = r

c
. (27)

Consequently,

ϕ = arcsin

(
t

r

)
, r = cz, (28)

and

p(r sin ϕ, r/c) = 0.

In particular, if the wall profile gives z explicitly as a function of t , say z = h(t),
then

r(ϕ) = ch(r(ϕ) sin ϕ) (29)

and

ch(t) = r

(
arcsin

(
t

ch(t)

))
. (30)

The following examples specify the wall projection and determine r(ϕ):

Example 15 (Linear wall projection: h(t) = at + b). The cutting cylinder in this
case is a plane, and (29) becomes

r(ϕ) = c(ar(ϕ) sin ϕ + b),

which can be solved for r(ϕ) to yield

r(ϕ) = bc

1 − ac sin ϕ
.

As expected, this is the polar equation of a conic section.

Example 16 (Circular cutting cylinder of radius 1). Cut the cone with a circular
drill of radius 1, perpendicular to the axis of the cone, whose center in the t z-plane is
at the point (w, d). Then the wall projection satisfies the implicit equation

(t − w)2 + (z − d)2 = 1.

From (27) we find (r(ϕ) sin ϕ − w)2 + (r(ϕ)/c − d)2 = 1, which is quadratic in r(ϕ).
If w = 0, the axis of the cutting cylinder passes through the axis of the cone and the

quadratic equation simplifies to

(r(ϕ) sin ϕ)2 +
(

r(ϕ)

c
− d

)2

= 1. (31)
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A graphing calculator can draw the graphs of (31), revealing the ceiling projection
of the hole for various values of c and d. Figure 31a shows snapshots on one nappe
only for c = 1 and increasing d, while Figure 31b shows snapshots for d = 0 and
increasing c.

Powerful 3-D modeling programs can be used to render the qualitative shape of the
curve of intersection of a cone and a cutting cylinder. But exact equations like those
derived here provide a deeper understanding and are also useful when graphing pro-
jection functions such as those in Figure 31 with simple 2-D programs. These graphs
are not specified by 3-D modeling programs that, for example, do not reveal whether a
projected oval curve is an ellipse or a curve of higher degree. Knowing that a curve is
an ellipse can have profound implications. For example, Kepler’s landmark discovery
that planetary orbits are elliptical implies Newton’s inverse-square law of gravitation.

The exact equations allow us to plot curves easily and animate them on a computer
screen using simple 2-D graphics programs instead of 3-D programs. Most illustrations
in this paper were prepared in this manner.

In Figure 31a the vertex angle of the cone is π/2. For small d the projection is
a centrally symmetric oval curve, which gradually changes its size and shape as d
increases. At some stage the center of the oval is pierced by a hole that increases in
size until d = √

2, when the ceiling projection consists of two overlapping confocal
ellipses. As d increases further, the ceiling projection splits into two disconnected
symmetric pieces that move further apart. This is consistent with our intuitive idea of
how the hole changes as a drill of constant radius passes through the axis of the cone

(a) α = π/4 (b) c = tan α

d = 2

d = 1.5

d = √
2

d = 1.3

d = 1

d = 0

d = −0.5

d = −0.9

c = 3

c = 2

c = 1

c = 0.5

c = 0.1

c = 0

Figure 31. Snapshots of ceiling projection of a horizontal hole of radius 1 drilled through the axis. (In (a) the
cone is fixed and the coordinate d varies; in (b) the drill is fixed and the vertex angle changes.)
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but continues to move away from the vertex. In Figure 31b, the axis of the drill passes
through the vertex of the cone and the snapshots show how the ceiling projection of the
hole varies as the vertex angle of the cone increases. We were surprised to learn that
all the projected curves in Figure 31b are ellipses! This is easily verified by writing
(31) in rectangular coordinates.

19. TILTED WALL PROJECTION. In the foregoing discussion, the cutting cylin-
der had its generators parallel to the ceiling plane. In descriptive geometry, and in
applications to sheet metal work, the cutting cylinder is not always parallel to the ceil-
ing plane but may be tilted at an angle β. By rotating the wall plane about the t-axis
we can relate the profile of C on the tilted plane with the wall and ceiling projections.
The relation is provided by the following theorem, whose proof is omitted:

Theorem 9. A tilted cylinder whose generators make an angle β with the ceiling plane
and that has tilted profile function z′ = q(t) intersects a cone of vertex angle 2α along
a curve whose wall profile z = h(t) is related to q(t) as follows:

q(t) = h(t) cos β +
√

c2h2(t) − t2 sin β, (32)

where c = tan α.

This expresses the tilted profile q(t) directly in terms of the wall profile h(t) and
the angles α and β. Also, if q(t) is given, we can use (32) to find h(t) by solving
a quadratic equation. For example, if q(t) = at + b, the slanted cutting cylinder is a
plane. If we put z = h(t), then (32) becomes quadratic in z and t , and the horizontal
profile is a conic, as expected.

20. ARCLENGTH AND AREA. When a curve of length L on a cylinder or cone is
unwrapped onto another curve, the arclength L remains unchanged because distances
are preserved. For example, the generalized ellipse in Figure 15b has the same length
as the ellipse in Figure 15a, even though there is no simple formula for calculating
these arclengths. In general, any unwrapped curve has the same length as its wrapped
version on the cone. From Figure 1 we see that an ellipse has the same arclength as an
unwrapped sine curve, without the need to calculate the elliptic integrals that produce
numerical values.

Unwrapping also preserves areas. In Figure 16, a portion of the circular cone un-
wraps onto a circular sector with central angle θ (Figure 16b) with area s2θ/2. In terms
of the parameters of the cone this area is equal to ρsϕ/2 by (14). In particular, when
ϕ = 2π each of these areas is equal to πρs.

More generally, we can ask for the sectorial area A(θ1, θ2) of the region bounded
by the unwrapped image of any curve C on the cone and two rays θ = θ1 and θ = θ2

emanating from the origin. When θ1 < θ2 this area is given by the following integral:

A(θ1, θ2) = 1

2

∫ θ2

θ1

R2(θ) dθ, (33)

with R(θ) determined by (18). Because areas are preserved when unwrapping a cone,
this integral has the same value as the lateral surface area of the portion of the cone
between the vertex and the original curve C on the cone. The change of variable ϕ =
kθ transforms the integral in (33) to

A(θ1, θ2) = 1

2k

∫ kθ2

kθ1

R2(ϕ/k) dϕ.
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In view of (19) we can write this as

A(θ1, θ2) = k

(
1

2

∫ ϕ2

ϕ1

r 2(ϕ) dϕ

)
, (34)

where r(ϕ) is the ceiling projection function for C0 and ϕi = kθi . The factor multi-
plying k in (34) is the sectorial area in the ceiling plane bounded by C0 and two rays
ϕ = ϕ1 and ϕ = ϕ2. Equation (34) can be rephrased in the following form:

Theorem 10. On a cone of vertex angle 2α, the lateral surface area of the portion of
the cone between the vertex and an arc of the original curve C on the cone is k times
the area of the corresponding ceiling projection, where k = 1/ sin α.

This is to be expected heuristically, because a thin nearly flat triangle of area T
formed by two nearby generators on the lateral surface of the cone, with one vertex
at the vertex of the cone, projects onto the ceiling plane onto a triangle with area
T0 = T sin α, hence T = kT0.

Although Theorem 10 refers to an unwrapped sectorial region, it implies a more
general result for regions lying between two curves C1 and C2 (with corresponding
unwrapping functions R1 and R2) and two given rays θ = θ1 and θ = θ2. The integral

1

2

∫ θ2

θ1

|R2
2(θ) − R2

1(θ)| dθ

gives the area of both the unwrapped region and the corresponding region on the cone.
Each of these areas is k times the area of the corresponding ceiling projection. Again,
this is to be expected heuristically, for any nearly flat elemental region of area T on
the cone projects onto the ceiling plane as a region of area T0 = T sin α, so T = kT0.
The next example gives a surprising consequence of this result.

Example 17 (Surface area pierced from a cone by a vertical cylinder). The fore-
going geometric argument supporting Theorem 10 gives an unexpected result. Any
region on the surface of the cone pierced by a vertical cylinder (with generators par-
allel to the axis of the cone) has area k times that of its ceiling projection, even if
the cylinder is not circular. In other words, the surface area removed from a cone
by a vertical cylinder of constant horizontal cross-sectional area A is equal to k A,
regardless of the shape or position of the cylinder.

We conclude with an interesting observation concerning the elliptical cross section
cut by a plane inclined at angle β (Figure 15a). Let E denote the area of the elliptical
disk, and let S denote the lateral surface area of the finite portion of the cone with
vertex angle 2α cut off by this disk. On the one hand, the ceiling projection of the
ellipse has area E cos β, and on the other hand, it is S sin α. This simple result for the
ellipse must surely be known, but we could not find it in the literature. It deserves to
be better known, so we state it here as a theorem.

Theorem 11. The area E of an elliptic cross-sectional disk and the lateral surface
area S of the finite portion of the cone cut off by the plane of the disk satisfy S sin α =
E cos β.
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A Simple Proof for a Well-Known Fact

Inspired by “Tom Apostol’s beautiful geometrical proof” for
√

2 being irrational (see [1]), we
give a simple proof for a well-known fact:

Theorem. For a positive integer N that is not a perfect square,
√

N is irrational.

Proof. Suppose
√

N = a/b, where a and b are positive integers and b is minimal. Then
gcd(a, b) = 1 and a > b > 1. Clearly b does not divide a, so there is some integer q such
that 0 < a − qb < b. The key observation is

√
N = a

b
= Nb

a
which implies that

√
N = Nb − qa

a − qb
,

using the fact that if α/β = γ/δ and rβ + sδ �= 0 then

α

β
= γ

δ
= rα + sγ

rβ + sδ
.

But a − qb < b, so this contradicts the minimality of b.
Alternatively, we can find integers r and s such that ra + sb = 1. Then

√
N = a

b
= Nb

a
= r Nb + sa

ra + sb
= r Nb + sa ∈ Z,

contradicting the fact that N is not a perfect square.
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